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Abstract 

Most stochastic frontier models have focused on estimating average productive efficiency across 
all firms. The failure to estimate firm-specific effiicency has been regarded as a major limitation of pre- 
vious stochastic frontier models. In this paper, we measure firm-level efficiency using panel data, and 
examine its finite sample distribution over a wide range of the parameter and model space. We also in- 
vestigate the performance of the stochastic frontier approach using three estimators: maximum 
likelihood, generalized least squares and dummy variables (or the within estimator). Our results indi- 
cate that the performance of the stochastic frontier approach is sensitive to the form of the underlying 
technology and its complexity. The results appear to be quite stable across estimators. The within es- 
timator is preferred, however, because of weak assumptions and relative computational ease, 

1. Introduct ion 

Since  the  p i o n e e r i n g  w o r k  o f  F a r r e U  [1957]) a l a rge  l i t e r a tu re  has  d e v e l o p e d  o n  
m e a s u r i n g  p r o d u c t i v e  ef f ic iency.  T h e  m a j o r i t y  o f  s tud ies  have  d e a l t  wi th  two b a s i c  
issues .  T h e  first  is h o w  to de f ine  the  p r o d u c t i o n  f u n c t i o n  o f  a f i rm o r  a n  indus t ry ,  
a n d  the  s e c o n d  is h o w  to m e a s u r e  eff ic iency.  T h e  two q u e s t i o n s  a r e  c lo se ly  r e l a t e d  
s ince  the  p r o d u c t i o n  f u n c t i o n  is u s e d  as  a y a r d s t i c k  for  e f f i c i ency  m e a s u r e m e n t .  

W e  h a v e  s o m e  t h e o r e t i c a l  g u i d a n c e  for  the  f irst  issue.  A p r o d u c t i o n  f u n c t i o n  is 
d e f i n e d  to b e  the  m a x i m u m  p o s s i b l e  o u t p u t  quan t i t y ,  g iven  i n p u t s  a n d  the  s ta te  o f  
t e c h n o l o g y .  S u c h  a f u n c t i o n  is c a l l e d  a frontier p r o d u c t i o n  f u n c t i o n  o r  a best p r a c -  
t ice t e c h n o l o g y ,  as  o p p o s e d  to the  t r a d i t i o n a l  e s t i m a t e d  average p r o d u c t i o n  func-  
t i on  o r  ave r age  p r a c t i c e  t e c h n o l o g y .  A c c o r d i n g l y ,  we c h o o s e  a f ron t i e r  i n s t e a d  o f  
a n  ave r age  p r o d u c t i o n  f u n c t i o n  as  a r e fe rence  p o i n t  to m e a s u r e  e f f i c i encyJ  

E v e n  t h o u g h  t h e r e  exis ts  s o m e  t h e o r e t i c a l  g u i d a n c e  to m e a s u r e  p r o d u c t i v e  ef- 
f i c i ency  [ D e b r e u  1951; F a r r e l l  1957; F a r e ,  G r o s s k o p f  a n d  Love l l  1985], 3 e f f i c i ency  

*The refereeing process of this paper was handled through J. van den Broeck. 
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measurement mostly depends on empirical or experimental studies. Efforts to 
measure efficiency can be divided into two approaches-statistical and non- 
statistical [Schmidt 1985; Charnes and Cooper 1985]. Although neither approach 
can give a definitive answer to the way in which efficiency is measured, we use the 
stochastic frontier approach as representative of the statistical approaches in this 
paper. The justification is that stochastic frontier models are based on more reli- 
able assumptions and empirical results than a fu l l  frontier [Greene 1980a, b] 
model. We will leave nonstatistical approaches to a future study. 

Stochastic frontier models rely on two important assumptions: The specific 
functional form to characterize the underlying technology, and the form of the 
stochastic components. The error terms in a stochastic frontier model usually con- 
tain a symmetric random error to capture noise and exogeneous shocks, and a 
one-sided error term to allow for inefficiency such as managerial related mistakes 
[Algner, Lovell and Schmidt 1977; Meeusen and van den Broeck 1977]. 

Previous stochastic frontier approaches largely have focused on estimating the 
average efficiency of all firms in an industry. Exceptions include studies by Jon 
drow et al. [1982], Huang and Bagi [1984], Schmidt and Sickles [1984], Waldman 
[1984], Cornwell, Schmidt and Sickles [1989], and Battese and Coelli [1988]. Ef- 
ficiency measurement, which is based on cross sectional data, is of an average na- 
ture across all firms and fails to identify firm-specific inefficiency. This has been 
regarded as a major limitation of previous stochastic frontier models. 4 However, 
there are two other serious drawbacks. The first is that a specific form for the dis- 
tribution of productive inefficiency is usually assumed in order to identify average 
inefficiency. This means that estimation of productive inefficiency can be sensi- 
tive to a priori assumptions on the distribution of productive inefficiency. The sec- 
ond is that inefficiency is often assumed to be independent of the inputs. In- 
tuitively, this does not correspond to the behavioral assumptions of firms. A firm, 
deciding on its choice of inputs, conditions its decision on the information set, 
which may include the perceived distribution of efficiency within the industry. We 
hope to show that these common problems can be ameliorated in part by a 
stochastic frontier approach using panel data. 

There are a few papers which compare results from the application of different 
frontier models to the same data [Kopp and Smith 1980]. Different measurement 
methods have also been compared for the same data, Banker, et al. [1986], Banker, 
Conrad and Strass [1986], Nelson and Waldman [1986], Bauer et al. [1986]. The 
common findings of these studies show that efficiency measurement depends on 
the choice of functional forms to approximate the underlying technology, and on 
the estimation methodologies employed. Unfortunately, further analysis of these 
findings are hindered by the lack of knowledge of the true production and inef- 
ficiency structures. To address this limitation we utilize Monte Carlo techniques 
which allow us to control the structure of the underlying technology and firm- 
level inefficiency. In our experiments we use approximating functional forms-- 
the CES-translog (CES-TL), the translog (TL) and the generalized Leontief 
(GL)--to estimate firm-specific inefficiency. We examine the robustness of es- 
timated firm-specific technical inefficiencies using three estimation techniques: 
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(1) maximum likelihood (mle), (2) generalized least squares (gls) and (3) the within 
estimator. 

The organization of this paper is as follows. Section 2 explains how the stochas- 
tic frontier model uses panel data for inefficiency measurement. Section 3 outlines 
three estimators--role, gls and the within estimator. Section 4 contains the general 
design of the Monte Carlo study. In Section 5, we estimate with a nonflexible func- 
tion (CES) firm-specific technical inefficiency using information about known ar- 
bitrary production technologies. We also investigate, in the same section, firm- 
level inefficiency using three flexible functional forms. Finally, we discuss 
conclusions and a direction for future research. 

2. The model  

To fix ideas about productive efficiency, we regard a firm to be a cost-minimizer. 
If a firm achieves its goal in a production activity, it is called an economically effi- 
cient firm; if a firm cannot attain its objective, it is called an economically ineffi- 
cient firm. Following FarreU, a firm may fail to minimize the cost of producing its 
output in two ways: (1) it may be technically inefficient, failing to operate on the 
production frontier or cost frontier or (2) it may be allocatively inefficient, failing 
to employ the least cost mix of inputs given the fixed relative input prices. This 
study focuses only on the former source of inefficiency.5 

Under the assumption that all firms in an industry have the same deterministic 
production process, 6 the representative firm's stochastic production function can 
be written as: 

Yit = f ( x i t ,  13) -I- I~it " 

~it = Vit - -  Ui ,  

U i ~ 0 ,  

i =  1 , . . . , N ,  

t = 1 . . . . .  T, (1) 

where Yit is an observation on output, xit is a vector if obsrvations on inputs, 13 is a 
vector of unknown production paramters, and eit is a random disturbance com- 
posed of a symmetric white noise component vit and a nonnegative component ui 
which represents firm specific technical inefficiency. Let N represent the number 
of firms, and T the number of time periods. This is a panel data model which is a 
cross section of firms (or plants), each observed for a number of time periods] 

In order to estimate (1), we need to first specify f(xit, 13). The chosen functional 
form depends largely on a priori  information about the underlying technology. 
Without specific engineering blue prints, etc., the choice of functional form is 
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usually based on its flexibility [Diewert 1971; Gal lant  1981]. 8 We consider the 
CRESH (Constant  Ratio of  Elasticity of  Substitution, Homothetic)  production 
function, which was introduced by Hanoch  [1971] and  used by Guilkey and Lovell 
[1980] and  Guilkey, Lovell and  Sickles [1983] as the underlying flexible 
technology. 

Let us suppose a firm utilizes m inputs Xit = (x(1)it, • . . ,  x(m)it) > 0 to produce a 
single output  Yit > 0 for all i,t with the product ion technology represented by 

y~te°yit = (k~__ml 8 ~X (k)i~ Pk)-Y/P (2) 

m 
w h e r e 0 / > , y > 0 ,  S k > 0 ,  f o r a l l k ,  ~ 8k = 1. 

k=l 
The advantage of  (2) is that  it nests many  well known deterministic production 

functions under  certain parametric restrictions. For  example, if0 = 0, (2) is almost 
homogeneous CRES, if  p~ = . . .  = Pro, (2) is homothetic  CES (Constant  Elasticity 
of  Substitution), if 0 = 0 and  pl = . . .  = Pro, (2) is homogeneous CES, and it has 
homothetic  Cobb-Douglas  as a limiting form as (Pl = . - . =  Pro) --~ 0. Under  
further restrictions, (2) can represent the Cobb-Douglas  production function and 
the CES production function. In other words, under  0 = 0, p~ = . . .  =Pm = P and  y 
= 1, (2) becomes the CES production function. I f0 = 0, (Pt = • • - =Pm = P) -+ 0 and 
y = 1, then the limiting form of  (2) is the Cobb-Douglas production function. 

To represent the complexity and  structure of the underlying technology, we use 
returns to scale, y(x) and  Al len-Uzawa partial elasticities of substitution (AES) be- 
tween inputs, c~ij(x), 9 

1 )--~ f) k8 kX{ k ) 
y(x) = I + 8~ Zp8kX(k)_Pk , (3) 

"kX-Pk 1 ~PkSkX{ ) 
(~ij(X) = (1 + pi)(1 + pj) ~ { ( P k S k ) / (  1 + Pk)l " x(k) -"k ' for i ~ j (4) 

1 ZPkSkX(k) -Ok 
a . ( x )  = - -  (5)  

(1 + PO PiS ix ( i ) -P i (  1 + Pi) 

[X{(Pk~k) / (1  + pk)}Xk pk -- { (p iS i ) / (1  + p3}x(i)-oq 
X { ( p k S 0 / ( 1  + p 0 1 x ( k )  - ~  

where we have omitted the observation subscripts for notational clarity. 
We next turn to the stochastic portion of( l ) .  As has been noted by Aigner et al. 

[1977], the first one of  two disturbances, vit is typically assumed to have a symmet- 
ric distribution about zero and  represents the usual statistical noise due to such 
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factors as luck, climate, topography,  and  mach ine  performance.  The  second dis- 
turbance  is assumed to have a non-negative distribution which reflects technical 
inefficiency. Even though we have no a priori  knowledge that  the distribution of  
technical  inefficiency has a specific non-negative form, we can examine different 
non-nega t ive  distributions to see how robust  our  estimates o f  product ive ef- 
ficiency will be. We will assume in this study that  technical  inefficiency is t ime in- 
variant.  1° A justif ication is that  f i rm-specif ic  inefficiency can be regarded as an in- 
herent  or structural residual between observed data and  the corresponding 
produc t ion  (or cost) frontier. Wi thout  violent  changes in economic  environments  
(that is, deregulation),  f i rm-specif ic  efficiency and  its relative ranking are not  
likely to change drastically over  finite time periods. 

The advantage of  a stochastic frontier model  using panel  data is placed on  the 
est imation of  the mean  value ofui,  E(u~. The  residual, vi - u~, of  the usual stochas- 
tic frontier models  using cross sectional data contains noise (vi) and  cannot  be 
used as a measure ofui.  Recently, a better  measure,  E(ui [ vi - ui), was suggested by  
Jondrow et al. and  Waldman.  This measure is dependent  on  distributional 
assumptions,  and  still is contamina ted  by  the presence of  vi. With panel  data we 
can estimate ui uncondi t ional ly ,  because we get to observe it T times instead of  
once. Intuitively, we are just  averaging away the noise vit over a large n u m b er  of  
t ime periods. 

Since the expected value of  the one - s ided  distribution is nonzero,  H it is 
necessary for us to correct  skewedness in order  to have unbiased  estimates o f  (1). 
The corrected model  is written as 

Yit = ( - - ~ )  "1- f ( x i t  , I~) + (hi - -  Ui )  -[- Vit , (6) 

T 
where [a is equal  to E(ui) = 1/T ~. Ui; and  

i=l  

Yit = (--[-1)  + f ( x i t  , [3) - -  U *  + V i t ,  (7) 

where u~ is equal  to (u~ - ~), so that the error  terms vit and  u~' have zero 
mean.  

It is well known that either the cost funct ion or the produc t ion  funct ion uni- 
quely define the true product ion  technology./2 Thus  we also may estimate f i rm-  
specific inefficiency using a stochastic frontier cost function. The choice between 
product ion  versus cost funct ion analysis should be based on  exogeneity assump- 
tions concern ing  the input  levels, on  the one hand,  and  the level o f  output,  on  the 
other. In practice the choice is usually made  on  the basis of  available data and  
computa t iona l  convenience.  W h e n  using cost frontiers insteads o f  product ion  
frontiers, the same arguments  can be employed  as above, except that the two 
e r ro r - componen t s  change sign. 
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3. The estimators 

We introduce three estimators for the stochastic frontier model using panel data. 
For  each estimator, we clarify the basic assumptions and  then explain how to 
derive the estimators. Finally, we form an index of  firm-specific technical inef- 
ficiency, which is based on the difference between the estimated production or cost 
frontiers, and  the observed data. 

As an estimator in previous stochastic frontier approaches)  3 the use of  max- 
imum likelihood requires several strong assumptions. First, we assume that the 
regularity conditions for the density functions hold [Norden 1972; 1973]. Second, 
we assume that  ui and  vii are half-normal  and  normal random variables. Third, 
technical inefficiencies are assumed to be independent  of  inputs. The likelihood 
function based on these assumptions was derived by Pitt and  Lee [1981]. We 
briefly ment ion the basic procedure of  derivation [Schmidt and  Sickles 1984]. 

From (7), ui is identical independent ly distributed (i.i.d.) with the ha l f -normal  
density function, 

h(u)  = 2/X,/2no2 • exp {-ui /2 t~},  ui ~ O, (8) 

and vit is i.i.d, with normal  density function, 

g(v) = l/x,/2n~2v • exp I - v . / 2 ~ l ,  - o o  < vi, < +oo, (9) 

where ui and  vit are independent.  
The joint  density function for the composed error, ~(ei) for a specific uni t  i has 

the following form: 

f0 ~ T V(eu . . . .  , err) = h(u)  ~-~ g(eit + u )du ,  (10) 
t = l  

and the likelihood for all firms (assuming independence) is 

N 

L = I-I v{yil - f(xil, 6 ) , . . . ,  Y i T  - -  f(XiT, 6)}' (11) 
i = l  

We next consider an index of technical inefficiency for a specific firm i rep- 
resented by the mean  value of  the difference between the estimated frontier func- 
tion and  observed data over T time periods, 

T 
0i = 1/T ~-~ [f(xit, ~) - Yit}, (12) 

t = l  

where ~ is the mle of  ~.~4 Here, t~ is the technial inefficiency of  the i - th  firm in 
terms of foregone output. 
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As with mle, the gls est imator is based on  an assumption that technical inef- 
ficiency is not  correlated with the inputs. However,  no specific form for the dis- 
t r ibut ion of  technical  inefficiency is assumed. 

Cons ider  the var iance-covariance matr ix of  the error  components :  

2 E(ee ' )  = o2(I .  ® 1TFr) + (~INT = f l  (13) 

where 1T is a vector of  l's of  order  T × 1. Since the var iance-covar iance  matr ix is 
not  scalar, direct appl icat ion of  a nonl inear  least squares (nlls) method  leads to 
inefficient coefficient estimates and biased variance estiamtes. In order  to reduce 
(13) to a scalar form, we use the t ransformat ion given in Fuller  and  Battese 
[1973]: 

P = Iv - (1 - Ov/O,)I(1TI~)/T} (14) 

where PP '  2 - 1  2 - I  2 2 = = (~v~'~i  , " ( I  u Ovf~ , PiPi and  Ol 2 = T + Ov. 
By applying the t ransformat ion P for all N T  observations of  (7), we get 

(Y~t- YY~) = (1 - y)la + {f(xit, [3) - -  vf(xit,[~)} "1- Vit (15) 

where 

T 

Yi = I / T  ~ YiD 
t = l  

T 

f(xit,[~) = 1 /T ~ f(xit,~), 
t = l  

and  y = 1 - (oJt~l). 
After we t ransform the original model  (7), we apply nlls to (15). However,  this 

t ransformed model  (15) depends on  7 and  thus on t~ 2 and  o 2. Consistent  est imation 
oft~ 2 and  ~ allows us to construct  the feasible GLS estimation [Judge et al. 1985[. 
The  derivation of  f i rm-specif ic  technical  inefficiency is based on  the same pro- 
cedure as out l ined in (12). 

The  within est imator  utilizes the variat ion of  the variables within the individual  
firm. As with mle and  gls, the f i rm-specif ic  effect is assumed to be time invariant.  
However,  we need not  assume independence  of  inputs and  technical inefficiency. 
Therefore,  the assumptions of  the within est imator are more tenable and  less res- 
trictive than  those of  mle and  gls. 

F rom  (1), we regard ( - u  3 as a d u m m y  variable which is specific to the i - th  firm. 
This leads to the incidental  parameters  problem asymptotical ly since we should 
include a duminy  variable for each firm. Therefore,  we ci rcumvent  the problem by 
using the within t ransformat ion [Arora 1973; Judge et al.]. After expressing all 
data in terms of  deviations from individual firm means  over time periods we apply 
nlls. The  t ransformed model  is 
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Y . -  '7i = {f(x,.13) - f ( x i .  [3)] + vi, - vi 

where  

T 

.Vi = 1 /T  ~ yi,, 
1=1 

' r  

?(xi,[3 ) = 1 /T  ~ f ix .d3)  
l = l  

T 

vi = 1/T ~ Vit. 
I = l  

We can  r ep resen t  (16) in a s imp le  fo rm as 

(16)  

wi, = g(xi,,[3) + vii* (17)  

where  

Wil = Yit -- .Vi, Vii*  = Vii - -  V i ,  

g(xi,.[3) = f(xit,[3 ) - f(xi,,~). 

By a p p l y i n g  nlls to (17), we c a n  der ive  the wi th in  es t imator .  E s t i m a t i o n  o f  
t echn ica l  inef f ic iency  for  an  ind iv idua l  f irm, ai, requi res  a v e r a g i n g  res iduals  for  
f i rm i ove r  the T t ime  per iods ,  

T 

a,  = 1 /T  ~.  [ y . -  f (x . .O))  (18)  
I = l  

where  ~ = the wi th in  e s t i m a t o r  o f  13. 
F o r  T --~ oo, a cons i s t en t  e s t ima te  o f  t echn ica l  e f f ic iency o f  the most eff ic ient  f i rm 

is M a x  (a3. We  can  ca lcu la te  the relative t echn ica l  e f f ic iency o f  each  firm, a*,  
a s  

ct~' = M a x  (a i )  - ai, 

i = l  . . . . .  N ,  
(19) 

in t e rms  o f  the  m o s t  eff ic ient  f i rm in a n  industry .  Even  t h o u g h  the  wi th in  e s t i m a t o r  
c a n n o t  s epa ra t e  f i r m - s p e c i f i c  t echn ica l  inef f ic iency  f rom a c o m m o n  fac tor  wh ich  
does  not  va ry  ove r  t ime  (e.g., capi ta l  stock,  in a sho r t - run  cost  funct ion) ,  an  es- 
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timate of  this c o m m o n  factor is not  necessary to calculate relative technical  inef- 
ficiency by (19). 

4. The design of experiments 

We consider  the CRESH product ion  technology with a single output  and three in- 
puts as the true technology. The  n u m b e r  of  observations is to be decided by the 
combina t ion  of  the number  of  firms (N = 10, 30, 50) and  the n u m b e r  of  time 
periods (T = 10, 50, 90). The  first step is to generate three inputs. The three inputs 
are drawn randomly  and independent ly  f rom a lognormal  distribution and  are 
fixed through all experiments.  Thus  the inputs are treated in our  experiments as 
exogenous. We can clearly draw the inputs f rom m a n y  possible distributions, for 
example,  a lognormal  distribution [Guilkey and  Lovell; Guilkey, Lovell and Sic- 
kles] or a un i form distribution [Nerlove 1971; and  Arora]. The  choice of  a log- 
normal  distr ibution is appropriate  when the value of  a r andom variable is regar- 
ded as representing the jo int  effect o f  a large number  of  independent  variables, so 
that  the effect of  a r andom change is in every case propor t ional  to the previous 
value of  the quantity. 

The  second step is to decide what  values to assign the parameters  (0, p~, 9, 6i, y) 
which depends on  the specific true technology. Since the nature of  a true technol-  
ogy may  quite p rofoundly  affect the properties of  the estimates which are obta ined 
by  various methods,  it is impor tan t  to know its exact nature, by  choosing its corres- 
ponding  parameters.  

The third step is to generate N .  T two-er ror  components  which consist of  N-  T 
assumed symmetric and non - symmet r i c  disturbances, respectively. Generally,  the 
N .  T observations ofvit are to be randomly  and independent ly  drawn from a nor- 
mal distribution, N(0,a~2). The N-  T observations of  ui are to be selected f rom a 
ha l f -no rma l  distr ibution for each experiment,  based on  absolute values f rom 
N(0,a~) and  are constant  over time. To characterize the case in which (1) there ex- 
ists noise in the generated data to confound  the measurement  of  technical  inef- 
ficiency and  (2) technical  inefficiency dominates  statistical noise, we assume that  
Oau and  a 2 are 1.03 and  0.505, respectively. 's 

Finally, we generate N-  T output  observations by  means  of  

yi,e °~it = (Six(1)~ pl + ,~2x(2)~ ~'2 + ,S3x(3)~TP3) -v/p + vi, -- ui. (20) 

Using the produc t ion  funct ion (20), we t ransform technical inefficiency in terms of  
foregone output  (that is, " u  0 into foregone inputs and construct  (Y~t, x(1)*, x(2)~, 
x(3)i~. Here, x(k)~t represents the amoun t  of  input  k including technical  inef- 
ficiency, and  Y~t is the stochastic frontier output. In each replication, we generate a 
set of  data consisting of  an  output  and three inputs. 
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To use frontier cost functions in estimating technical  inefficiency, it is necessary 
to t ransform the data base for a frontier product ion  function into that o f  a frontier 
cost function. Under  the assumption that each firm is a profit  maximizer,  input  
prices are generated by  means  of  

w(k)i t = e-eyit(1 + 0yit)-I(yS(k)pk/p)x(ki~ (l+pk)" 

3 

( ~.. 8kX(k)i~(~'+P)/PeCit. (21) 
k = l  

where ei, ~ N(0, o 2) is designed to capture r andom errors in profit  maximiation.  
Next, the observed cost data including technical  inefficiency is obta ined by 

means  o f  
3 

C(y °y, w(1), w(2), w(a))it -- ~ (w(k)itx(k)~t). (22) 
k=i 

Thus,  we have the data base, C(.  ), w(l), w(2) and  w(3) for the use in a stochastic 
frontier cost model.  

5. Experimental results 

Pitt and  Lee and Schmidt  and Sickles in t roduced models in which firm-specific 
productive efficiency could be estimated using panel  data. These two studies are 
based on relatively small data sets and  an  unknown  technology. Pitt and Lee use a 
sample of  50 Indones ian  weaving firms, each observed for three years. Schmidt  
and  Sickles use a sample of  twelve U.S. airlines, each observed for 35 quarters. Es- 
t imat ion of  f i rm-specif ic  productive efficiency and  examinat ion  of  its finite sam- 
ple properties would benefi t  from Monte  Carlo techniques. 

The main  purpose of  this section is to investigate the finite sample properties of  
est imated technical  inefficiencies from stochastic frontier models using panel  
data. To  be clear how robust the estimates are, we use three different es t imators- -  
role, gls and  the within estimator. 

We first assume a CES product ion  funct ion as a special case of  the CRES H  pro- 
duct ion function, 16 

Yit = (5,X(1) -p + 52X(2) -p + 53X(3)-P) -'/p (23) 

where 51, 52 and 53 > O; Y-8, = 1; - 1  < p 4: O; x(1), x(2) and  x(3) are the three 
inputs. 

We add two error  components  to (23) and form the stochastic product ion 
function: 

Yi, = (S ix ( l )  -° + 62x(2) -" + 83x(3)-P) -I/° - ui + vit (24) 
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where ui has a non-negat ive  distribution independent  of  inputs and  vit is assumed 
to be i.i.d. N(0, c2), independent  of  ui and  inputs. Firm-specif ic  technical inef- 
ficiency and  its finite sample properties are first examined using (24). 

The stochastic frontier cost function can also be used to estimate firm-specific 
inefficiency. One way to derive the stochastic CES cost function is to use a known 
CES product ion function and  conditions for aUocative efficiency. We require the 
firm to be allocatively efficient by assuming that it operates on its least cost expan- 
sion path. Given input prices, the three conditions for allocative efficiency based 
on the known CES technology are: 

w(1). /w(2)i ,  = (8,/82)" (x(2)~,/x(1)*) '+p 

W(1) i t /W(3) i  t = (61/63)"  (x(3)3t/x(1)~) 1+0 

w(2)./w(3)it  = (62/63)" (x(3)*/x(2)*) 1 +p 

(25) 

(26) 

(27) 

where w(1), w(2) and  w(3) are prices of  inputs x(1)*, x(2)* and  x(3)*. We derive the 
stochastic input  demand  equations by combining the stochastic CES production 
function with the three conditions for allocative efficiency, 

x(1)~t = (1/A(1)it)" (Yit -- Vit + Ui) (28) 

X(2)~t = ( I / A ( 2 ) . ) "  (Yit -- Vit + Ui) (29) 

X(3)~t = ( 1 / A ( 3 ) i t ) "  (Yit -- vit + Ui) ( 3 0 )  

where 

A(1)it = {51 + 82(W(1)it" 82/w(l)it" 81) -(p/I+p) 

+ 83(W(1)i t " 83/W(3)it" 81)-(°/l+°)} -1/°, 

A(2)it = {Sl(W(2) i t"  81 /w(1 ) i t "  82) -(p/I+p) "it- 82 

+ 83(w(2) i t "  83 /w(3 ) i t "  82)-°/1+P)} -I/p, 

A(3)it = {Sm(w(l)i t  • 8 3 / w ( 3 ) "  81) -(°/l+°) + 63 

+ 82(W(2)i  t • 8 / w ( 3 )  • 82)-(P/l+P)} -1/p. 

Note that x(k)*, k = 1,2,3, are bounded  from below by the stochastic input 
demand  frontiers, 

x(k) = (1/A(k)it)-  (Yit - Vit)" 
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The excess amount of input demands above these frontiers are due to the technical 
inefficiency above, and equal 1/A(k)~t- u~ for each input k, firm i and time t. 

Finally, the stochastic cost function can be expressed as 

~(y, w(1),w(2),w(3))it = ~ w(k)v" x(k)~ 
k 

= {w(1)it/A(l)it -F w(2)it/A(Z)it + w(3)/A(3),} {Y,t - v~t + ui} 

= ctit" {Yit - vi, + ui I. (31) 

where ctit= Y'k w ( k ) i t / A ( k ) i t  . The term etit" ui represents the amount by which obser- 
ved cost exceeds the stochastic cost frontier. The advantage of this expression is 
that it shows the correct relationship between technical inefficiency in the un- 
derlying stochastic production function and derived technical inefficiency in the 
dual stochastic cost function. 

Unlike the derived stochastic Cobb-Douglas cost function suggested by 
Schmidt and Lovell [1979,1980], the derived stochastic CES cost function (31) is a 
complex nonlinear functional form and is rather empirically intractable. We do 
not use the directly derived cost function (31) in the study. 

Another way to derive the stochastic CES cost function is to use the known CES 
production function and conditions for cost minization. We derive the deter- 
ministic CES cost function from (23) as: 

c(y, w(1), w(2), w(3))it 

= y.lal / ,- . .  ( I /w (1 ) . )p / ' - p  + 82'/'-p. ( l /w(2) i t )p l , -p  

+ iS~/'-P. (l/w(3)it)P/'-P}. (32) 

The stochastic CES cost function is then 

e(y, w(1), w(2), w(3))it = c(y, w(1), w(2), w(3))it + u i -  vit. (33) 

To evaluate how well the stochastic frontier approach estimates the true firm- 
specific inefficiencies, we need criteria to evaluate relative performance. We use 
the correlation coefficient and  the rank correlation coefficient between the es- 
timated levels and the true levels of inefficiencies. In Table 1, we report the sample 
correlation coefficients between the true level of firm-specific technical inef- 
ficiency and the estimated levels of inefficiency for N = 10, 30, 50 and T = 10, 50, 
90, averaged over 50 replications. We also report the sample rank correlations 
in parentheses. 
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Table 1. Correlation Coefficient and Rank 
Correlation Coefficient a 

N/T 
MLE 10 50 90 

10 0.9131 0.9615 0.9872 
(0.6242) (0.8060) (0.7818) 

30 0.8860 0.9613 0.9793 
(0.7250) (0.9132) (0.8780) 

50 0.9093 0.9770 0.9841 
(0.7446) (0.9029) (0.8764) 

GLS 

10 0.9228 0.9687 0.9882 
(0.5636) (0.8060) (0.9030) 

30 0.9051 0.9676 0.9785 
(0.6903) (0.9399) (0.8665) 

50 0.8609 0.9536 0.9791 
(0.6720) (0.9239) (0.8456) 

Within 

10 0.9237 0.9582 0.9844 
(0.6848) (0.8181) (0.8424) 

30 0.8609 0.9596 0.9791 
(0.6720) (0.9239) (0.8456) 

50 0.9072 0.9777 0.9837 
(0.7531) (0.9084) (0.8762) 

aEach column/row entry is the correlation coefficient 
of firm-specific technical inefficiency in terms of 
foregone output between a true firm-specific technical 
inefficiency and an estimated firm-specific inef- 
ficiency for a sample. Each experiment uses 0 = 0, 

2 2 y = 1.0, G 1 = 62 = 0.3, o u = 1.03, o v = 0.505. We also 
use default values of 0 = -0.67, N = 30, T = 50. Each 
set of results is based on 50 replications of the 
experiments. 

Three  aspects  o f  the resul ts  s u m m a r i z e d  in  T a b l e  1 are wor thy  of  c o m m e n t .  
First ,  regardless  of  s a m p l e  size a n d  es t imator ,  all  s a m p l e  co r re l a t ion  coeff ic ients  
are la rger  t h a n  0.85 a n d  d o m i n a t e  the c o r r e s p o n d i n g  s a m p l e  co r re l a t ion  coef- 
f ic ients  o f  relat ive r a n k i n g s  wh ich  are also re la t ively large, r a n g i n g  f rom 0.56 to 
0.92. As T increases ,  we f i nd  tha t  the s a m p l e  co r re l a t ion  coeff ic ients  a p p r o a c h  one  
for f ixed N as we w o u l d  expect  f rom asympto t i c  theory.  We  also no te  tha t  re la t ively 
h igh  co r re l a t ions  are pa r t i a l ly  a t t r ibu ted  to correct  i n f o r m a t i o n  a b o u t  the u n d e r l y -  
i ng  t rue technology .  The  effect o f  a p p r o x i m a t e  f u n c t i o n a l  forms  o n  the e s t i m a t i o n  
of  ine f f i c i ency  will  be  d i scussed  in  the nex t  sect ion.  Second ,  the three  es t imators  
are s im i l a r  i n  e s t ima t ing  f i rm-spec i f i c  t e chn ica l  ineff ic iency.  Th i rd ,  w h e n  we com-  
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pare the correlat ion coefficients of  efficiency levels with those of  efficiency ran- 
kings, we find that the correlat ion coefficients of  efficiency levels are always larger 
than  those of  efficiency rankings for all samples. This is attributable to loss of  in- 
formation, which is expected when  efficiency levels are t ransformed into ef- 
ficiency rankings. 

Table  2 shows the finite sample properties of  f irm-specif ic  technical inef- 
ficiency estimates using m e a n - s q u a r e - e r r o r  (MSE), bias and variance. Several ex- 
pected patterns are evident. For  all estimators and  a relatively large number  of  
firms (N = 50), bias, variance and MSE fall as T increases. For  small N (N = 10) in 
Table  3, we do not  see any  clear pat tern in bias, variance and MSE. Our  findings 
from finite samples correspond to the results of  asymptotic analysis as follows: 
Consistent  estimates of  f i rm-specif ic  technical  inefficiency using panel  data need 
two ideal conditions,  N --~ oo and  T--~ oo. I f  we consider  the realtive efficiency of  es- 
timators, the gls est imator is more (MSE) efficient than mle and  the within es- 
t imator  for all samples. However,  the margin in MSE between the three estimators 
is negliable for large N and  T. 

In  Table  4, we report  the sample correlat ion between the true level of  f i rm-  
specific technical  efficiency and  the est imated level of  efficiency in terms of  excess 
cost. The  sample correlat ion coefficient of  relative rankings is in parenthesis.  The  
results are quite similar to those of  Table  1. The stochastic frontier approach using 
the dual  cost funct ion (that is, the CES cost function) also very well estimates f i rm-  
specific technical  inefficiency from panel  data. 

We now assume that  our  in format ion  about  the underlying technology is in- 
complete.  We use approximat ing functional  forms to model  the true technology 
and  inefficiency. The  choice of  a funct ional  form is impor tant  to this study, since 
any  bias that m a y  be in t roduced by  employing an  inappropria te  functional  form 
will distort efficiency measurement .  

Genera l  criteria for the choice of  a functional  form are discussed in Fuss, 
McFadden ,  and  Mund lak  [1978]. The chosen functional  form should (1) impose 

Table 2. Finn-specific Technical Inefficiency From a 
CES Production Function N = 50 

T 10 50 90 

MSE a 0.4241 0.3743 0.3726 
MLE Bias 0.0388 0.0350 0.0335 

Var 0.4214 0.3723 0.3715 
MSE 0.4198 0.3721 0.3712 

GLS Bias 0.0455 0.0348 0.0342 
Var 0.4164 0.3703 0.3701 

MSE 0.4338 0.3802 0.3794 
Within Bias 0.0429 0.0326 0.0320 

Var 0.4306 0.3785 0.3784 

aMSE, bias and variance are an average of finn-specific 
inefficiencies across all firms. 
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Table 3. Firm-specific Technical Inefficiency from a 
CES Production Function N -- 10 

T 10 50 90 

MSE 0.3505 0.3327 0.3860 
MLE Bias 0.0562 0.0261 0.1084 

Var 0.3461 0.3316 0.3739 
MSE 0.3359 0.3077 0.3141 

GLS Bias 0.0539 0.0433 0.0424 
Var 0.3319 0.3053 0.3119 

MSE 0.3822 0.3342 0.3412 
Within Bias 0.0401 0.0228 0.0265 

Var 0.3802 0.3334 0.3403 

Table 4. Correlation Coefficient and Rank 
Correlation Coefficient From the Dual CES Cost 
Function a 

N f r  
MLE 10 50 90 

10 0.9057 0.9603 0.9774 
(0.5757) (0.7454) (0.7818) 

30 0.8312 0.9178 0.9217 
(0.6298) (0.8144) (0.7757) 

50 0.9014 0.9813 0.9849 
(0.7495) (0.9189) (0.8186) 

GLS 

10 0.9192 0.9687 0.9880 
(0.6242) (0.8060) (0.9272) 

30 0.8751 0.9662 0.9802 
(0.6921) (0.9217) (0.8782) 

50 0.9017 0.9768 0.9792 
(0.7495) (0.9073) (0.8763) 

Within 

10 0.9166 0.9602 0.9855 
(0.6242) (0.8060) (0.8424) 

30 0.9068 0.9666 0.9773 
(0.7606) (0.9337) (0.8589) 

50 0.9082 0.9787 0.9846 
(0.7380) (0.9030) (0.8906) 

aEach column/row entry is the correlation coefficient 
of firm-specific technical inefficiency in terms of ex- 
cess cost between a true firm-specific technical inef- 
ficiency and an estimated firm-specific inefficiency. 
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as little structure as possible on the technology, and  (2) be empirically tractable, 
that is, it should be parsimonious in its use of parameters. We use three flexible 
forms whose duals cannot be represented in closed form but which satisfy the 
general criteria: CES-translog [Pollak, Sickles, Wales 1984], generalized-Leontief 
[Diewert 1971,1973] and translog [Christensen, Jorgensen and Lau 1971,1973], 
Sargen [1971]. 

The first approximation we consider is the translog (TL), 

In c(y,w) = ct0 + ay In y + ~- ayy(ln y)2 

+ ~ a i  In wi + ½ - ~ a ~ j ( l n  wi)(ln wj) 
i i j 

+ ~ayi(ln y)(ln wi); (34) 

; cqj = aji for all i =~ j. 

Necessary and sufficient conditions insuring that c(y,w) is linearly homogeneous 
in input prices are: 

~ c t i =  1; ~jct~j= 0, i =  1 , . . . m ; ~ % i = 0 .  (35) 
i i 

It is well known that the estimated translog cost function frequently fails to 
satisfy the concavity condition over the whole range of the input prices that well- 
behaved cost functions should possess. Jorgenson and Fraumeni [1981], Jorgen- 
son [1984] and Diewert and Wales [1987], among others, impose global curvature 
conditions over the set of  prices generating nonnegative input demands. A poten- 
tially serious problem with these suggestions, however, is that they compromise 
the flexibility of the translog. Thus we maintain the concavity condition as a test- 
able hypothesis. 

Using Hotelling's lemma, a typical cost-minimizing share equation for input 
i is 

mi(y,w) = O I n  c/O I n  w i = O c .  w i / O w  i • c ~- x i • w i / c  

= (/-i "1- ~jcti~(ln wj) + ayi In y, i = 1 . . . .  , m. (36) 

As economic measures of the underlying technology, we use the AES, oij(x) and 
returns to scale, y(x) given by 

y(y,w) = (0ty + Ctyy In y + ~. tXy i In wi) -L, 

t~ i j (y ,w)  = (Ctij + m i "  mj)/mi" mj, for i ~ j, 

~ i i ( y , w )  = (O.ii - -  m i  + m ~ ) / ( m l )  2. 
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Next, we consider  the CES-translog [Pollak, Sickles and  Wales], which com- 
bines the CES and  the translog and  thus is a hybr id  form. One advantage of  the 
CES-translog is that it is compat ible  with a wider range of  substitution possibilities 
than  ei ther the CES or the translog. The  m - i n p u t  CES- t rans log  is given by  

In c(y,w) = a0 + ay In y + ½. ayy(ln y)2 

r 71t(1--~) 

+ in L~ajw]-<, j 
-I- 1.  E E a j  i In wj In W i 

j i 

+ ~ a y i  In y .  In wi, (37) 
i 

where c% = aji, for all i j ;  ~j~ji = 0, for i = 1 . . . . . .  m; ~j% = 1; ~j%j = 0. 
By Shephard 's  lemma,  the cos t -min imiz ing  input  d em an d  functions, in share 

form, are given by 

mi(y,w ) = (a  i • w~-°)/(Zotjw] -°) "1- Ejl~ij In wj + Cry i In y. (38) 
j J 

AES and  returns to scale are given by  

y(y ,w)  = (ay + ~yy In y + ~ a y i  In wi) -1 
i 

[ (I~W 1-~ ( ~  W 1 0 ) ]  "t-t~ij " 1 - m i m j } / m i m j ,  f o r  i g= j ,  • ( j j  )/ <~-  

( v w,-O  . (aiw1-O)2]/ o,o w -o. 
.-I 

2 /mE. (39) CtKW l - °  "1- ~ii "['- mi -- m i  

I f  aij = Ctyj = 0 for all i j ,  the CES- t rans log  input  d em an d  
system and  cost funct ion reduce to those of  the CES. W h en  o = 1, the C E S -  
translog system reduces to that  of  the translog, and  as o approaches  one, its cost 
funct ion approaches  the translog's. 

The  final approximat ion  we consider  is the genera l ized-Leont ie f  (GL) which 
we write as 

c(y,w) = y~.,~aijwVZw~/z + y2~-~(/.iW i + Z~iWi (40) 
i j i i 

where o~j = (l, ji for all i :/: j. Applying Shephard 's  lemma,  we obtain the system of  
derived input  d e m a n d  functions as 

xi(y,w) = y~,aij(%/wi) I/2 + y2ai + [~i, for i = 1 . . . .  , m. (41) 
i 
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Returns to scale and AES are given by 

(xx zi )-' y ( X )  = (Xijwil/2wsl/2 + 2y aiwi • ( c ( y , w ) / y )  
- i j 

Oij(X) = (lo~ijyw.~l/2W~-11Z)(c(y,w)/xixj), for i 4: j, 

f r \ 
= t'yw,'c y,w  o  wmx . 

• , .  - -  / j 

The GL approximation is non-homothetic unless ai = 13i = 0, for all i, in which 
case it is linearly homogeneous. Thus the GL approximation is incapable of dis- 
tinguishing among homotheticity, homogeneity and linear homogeneity. If a~j = 0 
for all i 4: j, the GL approximation collapses to a fixed proportions form. 

Using equations (34), (37) and (40), we estimate stochastic frontier models sub- 
ject to the restrictions implied by symmetry and linear homogeneity. We also es- 
timate the cost function system which consists of a deterministic cost function and, 
either the share equations in the case of the TL and the CES-TL (see equations (36) 
and (38)), or the demand equations in the case of the GL (see equation (41)). We 
impose a simple stochastic structure on the systems: Additive normal errors which 
are independent over observations and which have a constant covariance matrix. 
System estimates are based on maximizing the concentrated log likelihood 
function. 

Our findings are summarized in Tables 5-9, each of which depend on the com- 
plexity and structure of the underlying technology. We characterize the technol- 
ogy by two factors. The first is the matrix of Allen-Uzawa partial elasticities of 
substitution among inputs, oij(x). We refer to a simple technology as one in 
which the off-diagonals of the AES matrix are the same, and are bounded away 
from unity, with input substitution being either easy (oij(x) > 1.33), or difficult (0 < 
oij(x) < 0.303). We consider a complex technology to be one in which a mix of sub- 
stitution possibilities exists, with substitution being much easier for some input 
pairs than for others. The second factor is returns to scale, y(x). We look at 
homogeneous, almost homogeneous, homothetic and almost homothetic tech- 
nologies. A complete set of technologies is based on permutations of oij(x) and 
~,(x). 

Tables 5-8 report the same statistics as Tables 1, 3 and 4, that is, correlation coef- 
ficients of firm-specific technical efficiency and its relative ranking. Table 9 
tabulates the AES and returns to scale using equations (3), (4) and (5) and their es- 
timates. For each observation in each replication (50) of an experiment, we calcu- 
late six AES and returns to scale for total number of observations 1500 (= Number 
of firms (30) × Number of time periods (50)). We report four statistics--median, 
median deviation, mean and absolute bias for the four estimators. Table l0 reports 
the set ofeigen values for the AES which satisfy the concavity condition among 50 
replications. Fractions in parentheses indicate the proportion of times that con- 
cavity is satisfied. We now turn to the results of these experiments. There are three 
main findings. 



Table 5. Correlation Coefficient In a Simple Technology 

Experiment CES-translog Translog Generalized-Leontief 

1. 9 = - 0 . 6 7  MLE 0.8919 0.7647 0.4292 
GLS 0.8912 0.8669 0.3782 
Within 0.8902 0.8847 0.3793 
Sys~m 0.4267 0.3781 0.5376 

2. p = - 0 . 5  MLE 0.9320 0.9488 0.5775 
GLS 0.9320 0.9447 0.4577 
Within 0.9322 0.9477 0.4651 
System 0.4196 0.6155 0.4962 

3. p = - 0 . 2 5  MLE 0.9844 0.9919 0.7146 
GLS 0.9841 0.9917 0.3782 
Within 0.9841 0.9917 0.9219 
System 0.7530 0.8963 -0.4384 

4. p = +0.1 MLE 0.2312 -0.1575 0.1931 
GLS 0.1277 0.1814 0.2517 
Within 0.0331 0.0213 0.2562 
System 0.1301 -0.0334 -0.3353 

5. p = +2.0 MLE 0.6788 -0.1048 0.3848 
GLS 0.6794 -0.1027 0.3782 
Within 0.6734 -0.0959 0.1193 
System -0.0834 -0.1179 -0.4048 

Table 6. Rank Correlation Coefficient In a Simple Technology 

Experiment CES-translog Translog Generalized-Leontief 

1. 9 = - 0 . 6 7  MLE 0.7721 0.7441 0.4095 
GLS 0.7721 0.8358 0.4255 
Within 0.7721 0.8660 0.4313 
System 0.2391 0.1692 0.2275 

2. p = - 0 . 5  MLE 0.7272 0.8963 0.4220 
GLS 0.7276 0.9047 0.4389 
Within 0.7268 0.8976 0.4531 
System 0.1190 0.2013 0.0131 

3. p = - 0 . 2 5  MLE 0.8478 0.9239 0.5136 
GLS 0.8513 0.9274 0.4255 
Within 0.8473 0.9274 0.7677 
System 0.4513 0.1123 -0.2836 

4. p = +0.1 MLE -0.2341 -0.0180 -0.0144 
GLS -0.1937 0.2627 -0.0447 
Within -0.1474 0.1862 -0.0234 
System 0.1296 -0.0620 -0.3971 

5. p = +2.0 MLE 0.5644 0.0117 0.0749 
GLS 0.5635 0.0629 0.4255 
Within 0.5639 0.0656 -0.0327 
System -0.0033 -0.0291 -0.1114 
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1. In Tables 5-6, we vary the input substitution in the underlying CES technol- 
ogy from t~ = 3.030 (p = -0.67) to a = 0.333 (p = +2.000). Overall, the CES-TL per- 
forms well through all possibilities of input substitution. As the underlying 
technology approaches the Cobb-Douglas, however, the TL dominates by a small 
margin, although the performance of the TL markedly deteriorates when the true 
elasticity of sustitution is quite small (a case close to a fixed coefficient technol- 
ogy). The performance of the CES-TL is better than the TL over a wide range of 
technologies. When we compare the performance of the GL to those of the CES- 
TL and the TL, we find that the GL does a relatively poor job of tacking the level of 
firm inefficiency through all possibilities of underlying technologies. In addition, 
no functional form measures technical inefficiency well as the underlying technol- 
ogy approaches fixed coefficients. These results have some intuitive appeal. The 
Cobb-Douglas is the only CES form compatible with the translog. If we consider 
that the CES-TL provides a transparent generalization of the CES and the TL, the 
performance of the CES-TL is better than that of the TL except for a special case 
of the underlying technology--Cobb-Douglas. We could conject that the GL is 
better than the two other forms in the case of a fixed coefficient technology. 
However, we can find no dominance of the GL in this case. 

A comparison between the single equation and the systems estimator reveals the 
systems estimator to be quite poor in estimating firm-specific inefficiency. One 
justification is that the systems estimator for a flexible functional form models the 
error structure in a very ad hoc fashion. As Bauer et al. have pointed out, research- 
ers whose primary goal is the study of industry technology estimate the system of 
cost and share equations (ignoring any inefficiency), whereas researchers of inef- 
ficiency estimate only the cost (production) function (foregoing the additional in- 
formation embodied in the share equations). 

Tables 7 and 8 point out that as the complexity of the underlying technology in- 
creases, the performance of the stochastic frontier model markedly deteriorates. 
One reason is that in a simple technology shortfalls from the frontier are assumed 
to be the result of technical inefficiencies. However, in a complex technology, we 
conject that the characteristics of the underlying technology, such as returns to 
scale or the AES, are different at the frontier than away from the frontier [Forsund 
and Jansen 1977; Forsund and Hjamarsson 1979a,b]. Thus, we need to find a 
reasonable specification which allows one to examine features of the technology 
at varying distances from the frontier [Schmidt 1985]. We still do not yet have a 
functional form with this characteristic. If the underlying technology has this 
potential characteristic, we can use non-parametric methods, avoiding the danger 
of distorting the efficiency measurement by imposing an incorrect parametric 
form. 

Based on Tables 5-8, we conclude that the ability of the stochastic frontier mod- 
els to estimate firm-level inefficiency is quite sensitive to the complexity and struc- 
ture of the underlying technology. 

2. Tables 1-6 indicate that the correlation coefficients of firm-specific technical 
inefficiency and its relative ranking are very similar for the three estimators (mle, 
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Experiment  CES-translog Translog Generalized-Leontief 

6. p = - 0 . 4 5  MLE 0.7957 0.0417 0.1512 
01 = -0 .4  GLS 0.0559 0.0544 0.0213 
P2 = -0.5 Within 0.0537 0.0544 0.0212 
03 = -0 .6  System 0.3929 0.1033 0.1083 

7. p = - 0 . 8 5  MLE 0.5133 0.3192 0.2262 
Pl = -0 .7  GLS 0.2636 0.3414 0.1466 
P2 = -0 .8  Within 0.2622 0.3419 0.1466 
03 = -0 .9  System 0.2369 0.2033 0.1083 

Table 8. Rank Correlation Coefficient In  a Complex Technology 

Experiment  CES-translog Translog Generalized-Leontief 

6. p = - 0 . 4 5  MLE 0.5590 0.4672 0.2910 
01 = -0 .4  GLS 0.5189 0.5002 0.2062 
P2 = -0.5 Within 0.5171 0.5043 0.2091 
03 = -0.6 System 0.3212 0.4027 0.4534 

7. p = - 0 . 8 5  MLE 0.3828 0.3486 0.2516 
Pl = -0 .7  GLS 0.3713 0.3539 0.3014 
P2 = -0 .8  Within 0.3730 0.3472 0.3014 
03 = -0 .9  System 0.3025 0.3121 0.5385 

gls and the within estimator). Since the within estimator is obtained without two 
strong assumptions, it would tend to be preferred. 

3. Flexible functional form estimates frequently fail to satisfy the appropriate 
theoretical curvature conditions over finite regions (rather than at a single point). 
Wales [1977], Caves and Christensen [1980] and Barnett and Lee [1985] compared 
various flexible functional forms with respect to their regions in a parameter space 
where curvature conditions are satisfied. Since [oij], i, j = 1, 2, 3 is a quadratic 
form of the cost function's Hessian, we can test the concavity of flexible forms 
using [oij]. For the TL and the GL, we have results quite similar to those of Caves 
and Christensen. The GL has good regional properties when substitutability is 
very low and the TL has good regional properties when all elasticities of substitu- 
tion are near one. These results are not surprising, since the GL is known to satisfy 
theoretical conditions everywhere in the Leontieftechnology; and the TL is known 
to satisfy theoretical regularity conditions everywhere if the true technology is the 
Cobb-Douglas. In the comparison among three functional forms, the CES-TL 
dominates two other forms over a wide range of technology. Thus, we prefer the 
CES-TL to the TL or the GL with respect to the satisfaction of concavity condition. 
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Table 9.1. CES-translog 

1. p = -0.67 

t~12 O13 323 Oil t~22 t~33 "I¢ 

True 3.030 3.030 3.030 -7.861 -7.538 -4.977 1.000 
MLE 2.929 2.636 2.614 -6.736 -6.358 -3.897 1.041 

(0.101) (0.394) (0.416) (1.125) (1.179) (1.080) (0.041) 
2.937 2.633 2.621 -6.737 -6.371 -3.917 1.042 

(0.092) (0.396) (0.408) (1.124) (1.167) (1.059) (0.042) 
GLS 2.921 2.644 2.619 -6.720 -6.343 -3.905 1.042 

(0.108) (0.385) (0.410) (1.141) (1.182) (1.068) (0.042) 
2.932 2.639 2.623 -6.710 -6.343 -3.905 1.042 

(0.097) (0.381) (0.407) (1.150) (1.195) (1.072) (0.042) 
Within 2.931 2.637 2.612 -6.738 -6.361 -3.900 1.041 

(0.098) (0.393) (0.417) (1.123) (1.176) (1.076) (0.041) 
2.940 2.631 2.616 -6.727 -6.353 -3.899 1.042 

(0.089) (0.398) (0.413) (1.134) (1.185) (1.078) (0.042) 
System 3.017 2.556 2.589 -6.954 -6.686 -3.750 0.817 

(0.019) (0.473) (0.440) (0.906) (0.851) (1.227) (0.182) 
3.017 2.556 2.589 -6.959 -6.684 -3.752 0.817 

(0.013) (0.473) (0.445) (0.902) (0.853) (1.225) (0.182) 

Table 9.2. Translog 

2. P = - 0 . 6 7  

(312 (313 o23 °l I °22 °33 ~( 

True 3.030 3.030 3.030 -7.861 -7.538 -4.977 1.000 
MLE 2.760 3.056 2.829 -6.407 -5.711 -4.202 1.043 

(0.270) (0.045) (0.200) (1.454) (1.826) (0.775) (0.043) 
2.699 3.017 2.859 -6.231 -5.876 -4.191 1.070 

(0.330) (0.012) (0.171) (1.630) (1.662) (0.786) (0.070) 
GLS 2.757 3.054 2.814 -6.483 -5.731 -4.148 1.044 

(0.272) (0.032) (0.216) (1.378) (1.807) (0.829) (0.044) 
2.751 3.056 2.813 -6.474 -5.726 -4.154 1.045 

(0.278) (0.026) (0.216) (1.387) (1.811) (0.823) (0.045) 
Within 2.773 3.040 2.833 -6.401 -5.736 -4.214 !.043 

(0.256) (0.035) (0.196) (1.460) (1.801) (0.763) (0.043) 
2.775 3.040 2.831 -6.406 -5.725 -4.221 1.044 

(0.255) (0.010) (0.199) (1.455) (1.812) (0.755) (0.044) 
System 2.785 2.900 2.873 -6.218 -5.825 -4.156 1.005 

(0.244) (0.130) (0.156) (1.643) (1.712) (0.821) (0.005) 
2.798 2.892 2.874 - 6.222 - 5.844 -4.159 1.006 

(0.231) (0.138) (0.1559) (1.639) (1.693) (0.818) (0.006) 
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012 013 023 O" 11 0"22 033 "i( 

True 3.030 3.030 3.030 -7.861 -7.538 -4.977 1.000 
MLE 1.454 2.910 2.895 -1.601 -1.573 -1.296 1.030 

(1.575) (0.122) (0.134) (6.260) (5.965) (3.681) (0.030) 
1.457 2.931 2.908 -1.601 -1.579 -1.301 1.033 

(1.573) (0.098) (0.121) (6.260) (5.958) (3.676) (0.033) 
GLS 1.459 2.906 2.887 - 1.604 - 1.570 - 1.303 1.032 

(1.570) (0.124) (0.142) (6.257) (5.967) (3.674) (0.032) 
1.462 2.981 2.887 - 1.604 - 1.569 - 1.303 1.032 

(1.567) (0.118) (0.143) (6.257) (5.968) (3.674) (0.032) 
Within  1.457 2.910 2.890 - 1.604 - 1.569 - 1.303 1.032 

(1.573) (0.119) (0.139) (6.257) (5.969) (3.674) (0.032) 
1.454 2.929 2.892 - 1.604 - 1.567 - 1.303 1.031 

(1.575) (0.110) (0.037) (9.695) (9.481) (5.620) (0.031) 
System 1.830 2.883 2.958 - 1.481 - 1.420 - 1.225 0.982 

(1.199) (0.146) (0.716) (6.380) (6.118) (3.752) (0.017) 
1.832 2.884 2.960 - 1.481 - 1.41 - 1.224 0.982 

(1.198) (0.146) (0.069) (6.380) (6.118) (3.753) (0.017) 

Table 9.4. CES-translog 

1. p = - 0 . 2 5  

ff12 013 ff23 t~l 1 022 0"33 Y 

True 1.333 1.333 1.333 -3.189 -3.116 -2.018 1.000 
MLE 0.682 0.940 0.971 -1.583 -1.615 -2.128 1.650 

0.666) (0.385) (0.355) (1.619) (1.529) (0.112) (0.643) 
0.666 0.947 0.977 -1.570 -1.587 -2.126 1.643 

(0.650) (0.392) (0.362) (1.606) (1.501) (0.110) (0.650) 
GLS 0.662 0.947 0.983 - 1.532 - 1.578 -2.106 1.647 

(0.670) (0.385) (0.350) (1.656) (1.538) (0.088) 0.647) 
0.655 0.946 0.983 -1.531 -1.587 -2.102 1.659 

(0.677) (0.386) (0.349) (1.657) (1.529) (0.084) (0.659) 
Within  0.666 0.947 0.983 - 1.532 - 1.573 -2.106 1.647 

(0.666) (0.385) (0.350) (1.656) (1.543) (0.088) (0.647) 
0.654 0.947 0.983 -1.531 -1.586 -2.103 1.660 

(0.678) (0.385) (0.349) (1.658) (1.530) (0.085) (0.660) 
System 0.656 0.890 0.927 - 1.499 - 1.563 - 1.955 0.756 

(0.677) (0.442) (0.405) (1.690) (1.553) (0.062) (0.243) 
0.661 0.891 0.928 - 1.505 - 1.568 - 1.964 0.755 

(0.672) (0.441) (0.404) (1.684) 0.548) (0.053) (0.244) 
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Table 9.5. Translog 

2. p = - 0 . 2 5  

G O N G  A N D  SICKLES 

O12 O13 023 OI I 022 033 ~¢ 

True 1.333 1.333 1.333 -3.189 -3 . i 16  -2.018 1.000 
MLE 0.650 1.007 0.972 -1.590 -1.551 -2.143 1.656 

(0.683) (0.325) (0.361) (1.599) (1.565) (0.127) (0.656) 
0.647 1.007 0.969 - 1.584 - 1.553 -2.132 1.662 

(0.686) (0.325) (0.363) (1.604) (1.563) (0.114) (0.662) 
GLS 0.646 1.009 0.974 -1.591 -1.552 -2.146 1.661 

(0.689) (0.317) (0.358) (1.598) (1.559) (0.121) (0.676) 
0.643 1.015 0.974 -1.591 -1.557 -2.139 1.676 

(0.686) (0.323) (0.359) (1.597) (1.564) (0.128) (0.661) 
Within  0.648 1.010 0.973 -1.592 -1.552 -2.146 1.663 

(0.684) (0.322) (0.359) (1.596) (1.564) (0.128) (0.663) 
0.643 1.015 0.974 -1.589 -1.556 -2.139 1.678 

(0.689) (0.318) (0.359) (1.599) (1.560) (0.121) (0.678) 
System 0.662 0.911 0.939 - 1.496 - 1.532 -2.024 1.233 

(0.670) (0.422) (0.394) (1.692) (1.584) (0.017) (0.233) 
0.663 0.905 0.937 - 1.489 - 1.533 -2.025 1.232 

(0.669) (0.427) (0.396) (1.699) (1.583) (0.007) (0.237) 

Table 9.6. General ized-Leont ief  

2. p = - 0 . 2 5  

O12 °13 023 t511 022 033 "/ 

True 1.333 1.333 1.333 -3.189 -3.116 -2.018 1.000 
MLE 0.452 1.417 0.983 - 1.978 - 1.960 - 1.907 1.292 

(0.881) (0.184) (0.350) (1.211) (1.156) (0.118) (0.320) 
0.392 1.352 0.885 - 1.757 - 1.758 - 1.723 1.147 

(0.940) (0.019) (0.448) (1.432) (1.358) (0.294) (0.147) 
GLS 1.459 2.906 2.887 - 1.604 - 1.570 - 1.303 1.032 

(1.570) (0.124) (0.142) (6.257) (5.967) (3.674) (0.032) 
1.462 2.912 2.887 - 1.604 - 1.569 - 1.303 1.032 

(1.567) (0.118) (0.143) (6.257) (5.968) (3.674) (0.032) 
Within  0.403 1.289 0.926 - 1.555 - 1.623 - 1.639 1.059 

(0.930) (0.098) (0.406) (1.633) (1.493) (0.378) (0.059) 
0.371 1.283 0.898 - 1.558 - 1.629 - 1.669 1.062 

(0.961) (0.049) (0.434) (1.777) (1.666) (0.449) (0.062) 
System 0.399 0.807 0.829 - 1.035 - 1.050 -0.837 0.637 

(0.933) (0.525) (0.503) (2.154) (2.060) (1.180) (0.362) 
0.372 0.809 0.829 - 1.033 - 1.039 -0.806 0.627 

(0.963) (0.523) (0.503) (2.156) (2.077) (1.211) (0.372) 
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t~12 (~13 o23 (311 022 033 Y 

True 0.333 0.333 0.333 -1.372 -1.543 -0.921 1.000 
MLE 0.321 0.328 0.328 -1.025 -1.200 -0.773 1.013 

(0.007) (0.005) (0.005) (0.334) (0.342) (0.153) (0.103) 
0.321 0.328 0.328 -1.066 -1.220 -1.772 1.013 

(0.011) (0.004) (0.004) (0.306) (0.323) (0.148) (0.013) 
GLS 0.325 0.327 0.327 -1.037 -1.202 -0.771 1.013 

(0.007) (0.005) (0.005) (0.335) (0.341) (0.150) (0.013) 
0.325 0.327 0.327 -1.065 -1.229 -0.772 1.013 

(0.007) (0.005) (0.005) (0.306) (0.314) (0.148) (0.013) 
Within 0.325 0.327 0.327 -1.016 -1.194 -0.766 1.012 

(0.008) (0.005) (0.005) (0.325) (0.331) (0.152) (0.013) 
0.325 0.327 0.327 -1.047 -1.211 -0.7688 1.013 

(0.008) (0.005) (0.005) (0.355) (0.348) (0.154) (0.012) 
System 0.330 0.330 0.330 -1.353 -1.528 -0.913 0.795 

(0.002) (0.002) (0.002) (0.019) (0.017) (0.008) (0.204) 
0.331 0.328 0.328 -1.271 -1.423 -0.839 0.791 

(0.001) (0.004) (0.004) (0.101) (0.119) (0.082) (0.208) 

Table 9.8. Translog 

3. O = +2.0 

012 013 O23 011 O22 033 y 

True 0.333 0.333 0.333 -1.372 -1.543 -0.921 1.000 
MLE 0.719 0.723 0.707 -0.773 -0.780 -0.703 1.104 

(0.396) (0.389) (0.373) (0.599) (0.763) (0.217) (0.104) 
0.718 0.723 0.707 -0.772 -0.780 -0.704 1.104 

(0.385) (0.389) (0.374) (0.599) (0.763) (0.217) (0.104) 
GLS 0.715 0.720 0.701 -0.848 -0.836 -0.759 1.172 

(0.382) (0.387) (0.368) (0.524) (0.706) (0.161) (0.172) 
0.715 0.720 0.701 -0.845 -0.834 -0.757 1.175 

(0.382) (0.387) (0.368) (0.527) (0.709) (0.163) (0.175) 
Within 0.715 0.720 0.702 -0.845 -0.834 -0.760 1.171 

(0.382) (0.386) (0.368) (0.527) (0.709) (0.101) (0.171) 
0.715 0.719 0.102 -0.842 -0.833 -0.760 1.173 

(0.382) (0.386) (0.368) (0.530) (0.709) (0.161) (0.173) 
System 0.727 0.708 0.710 -0.748 -0.803 -0.686 1.108 

(0.394) (0.375) (0.377) (0.624) (0.740) (0.235) (0.108) 
0.727 0.708 0.711 -0.747 -0.803 -0.686 0.108 

(0.394) (0.375) (0.377) (0.624) (0.739) (0.234) (0.108) 
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Table 9.9. Genera l ized-Leont ief  

3. p = +2.0 

0"12 ~13 0"23 13"11 a22 ¢~33 Y 

True 0.333 0.333 0.333 - 1.372 - 1.543 -0.921 1.000 
MLE 0.419 0.412 0.415 -2 .637 -2.876 - 1.913 1.000 

(0.086) (0.079) (0.081) (1.264) (1.333) (0.991) (0.002) 
0.417 0.412 0.415 -2.637 -2.879 -1.913 1.003 

(0.086) (0.079) (0.082) (1.264) (1.336) (0.092) (0.003) 
GLS 0.419 0.412 0.415 -2.637 -2.877 -1 .914 1.003 

(0.086) (0.079) (0.081) (1.266) (1.333) (0.992) (0.003) 
0.419 0.412 0.415 -2.637 -2.879 -1.917 1.003 

(0.086) (0.079) (0.081) , (1.264) (1.336) (0.994) (0.003) 
Wi th in  0.419 : 0 . 4 1 2  0.415 -2.638 -2.877 -1.914 1.003 

(0.086) (0.079) (0.081) (1.266) (1.333) (0.992) (0.003) 
0.419 0.412 0.415 -2 .639 -2.879 -1.918 1.003 

(0.086) (0.079) (0.081) (1.263) (1.336) (0.995) (0.003) 
System 0.293 0.203 0.210 -3.408 -3 .759 -2.287 0.944 

(0.040) (0.129) (0.122) (2.035) (2.211) (1.365) (0.055) 
0.293 0.203 0.211 -3 .406 -3.761 -2.288 0.944 

(0.039) (0.014) (0.122) (2.634) (2.218) (1.367) (0.055) 

Table 9.10. CES-translog 

6. p = -0.85,  Pl = -0.7,  02 = -0.8,  I)3 = -0 .9  

t~12 O13 t~23 (311 t~22 a33 Y 

True 2.182 4.364 6.546 -23.59 -17.56 -4.156 0.984 
MLE 1.766 3.945 5.104 - 18.80 - 12.26 - 3.145 1.020 

(0.415) (0.440) (1.442) (6.788) (5.298) (1.011) (0.035) 
1.697 4.049 5.098 - 19.50 - 12.22 - 3.1 64 1.020 

(0.485) (0.315) (1.448) (6.084) (5.344) (0.991) (0.035) 
GLS 1.858 3.824 5.024 -18.42 -12.10 -3.106 1.020 

(0.323) (0.539) (1.522) (7.163) (5.458) (1.050) (0.035) 
1.834 3.846 5.018 -18.41 -12.12 -3.105 1.021 

(0.347) (0.518) (1.528) (7.172) (5.444) (1.050) (0.036) 
Wi th in  1.907 3.868 5.037 -18.81 -12.25 -3.065 1.020 

(0.274) (0.496) (1.509) (6.774) (5.314) (1.091) (0.035) 
1.886 3.877 5.029 -18.84 -12.24 -3.069 1.021 

(0.295) (0.487) (1.517) (6.751) (5.318) (1.087) (0.036) 
System 1.312 5.221 6.119 -26.75 -14.46 -3 .720 0.958 

(0.869) (0.857) (0.451) (2.292) (3.162) (0.500) (0.026) 
1.186 5.327 6.176 -26.81 -14.513 -3 .800 0.958 

(0.996) (0.965) (0.370) (1.226) (3.054) (0.356) (0.025) 
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Table 9.11. Translog 

4. p = -0.85, Pl = -0.7, P2 = -0.8, P3 = -0.9 
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0-12 O"13 0-23 0-11 0-22 033 ~/' 

True 2.182 4.364 6.546 -25.59 -17.56 -4.156 0.984 
MLE 1.778 4.005 5.125 -18.96 -12.28 -3.138 1.018 

(0.403) (0.359) (1.421) (6.691) (5.297) (1.017) (0.034) 
1.682 3.899 5.145 -19.35 -12.50 -3.125 1.025 

(0.499) (0.466) (1.401) (6.236) (5.065) ( 1 . 0 3 0 )  (1.017) 
GLS 2.197 3.819 4.806 -19.59 -11.90 -2.952 1.019 

(0.074) (0.545) (1.740) (5.996) (5.657) (1.204) (0.035) 
2.159 3.818 4.807 -19.50 -11.87 -2.957 1.020 

(0.022) (0.546) (1.739) (6.089) (5.688) (1.199) (0.035) 
Within 1.943 3.864 5.040 - 19.07 - 12.31 -3.051 1.019 

(0.239) (0.500) (1.506) (6.513) (5.249) ( 1 . 1 0 5 )  (0.034) 
1.928 3.870 5.027 -19.08 -12.29 -3.051 1.019 

(0.253) (0.493) (1.519) (6.511) (5.271) (1.105) (0.035) 
System 1.923 4.527 5.639 -21.50 -12.04 -3.702 0.985 

(0.686) (0.285) (0.916) (4.115) (5.522) (0.463) (0.007) 
2.102 4.688 5.491 -22.43 -11.96 -3.798 0.987 

(0.079) (0.324) (1.055) (3.157) (5.601) ( 0 . 3 5 8 )  (0.002) 

Table 9.12. Generalized-Leontief 

4. p = -0.85, Pl = -0.7, 132 = -0.8, P3 = -0,9 

0-12 0-13 023 0-11 0-22 0-33 Y 

True 2.182 4.364 6.546 -25.59 -17.56 -4.156 0.984 
MLE -1.751 3.270 3.184 -5.611 -2.647 -0.705 0.703 

(2.933) (1.093) (3.362) (19.98) (14.91) (3.451) (0.057) 
-0.883 2.904 2.849 -4.656 -2.177 -0.630 0.703 
(3.065) (1.459) (3.697) (20.93) (15.38) (3.526) (0,281) 

GLS - 1.847 4.087 3.812 -6.306 -2.463 -0.692 1.030 
(4.029) (0.277) (2.734) (19.28) (15.10) (3.464) (0.046) 

- 1.848 4.080 3.820 -6.305 -2.463 0.692 1.030 
(4.030) (0.283) (2.726) (19.28) (15.10) (3.464) (0.045) 

Within -1.977 4.120 3.835 -6.258 -2.460 -0.693 1.030 
(4.133) (0.240) (2.723) (19.33) (15.10) (3.462) (0.046) 

-1.977 4.120 3.835 -6.258 -2.460 -0.693 1.030 
(4.240) (0.407) (2.955) (34.92) (29.11) (8.298) (0.048) 

System -0.053 3.955 4.623 -4.013 -1.966 -0.758 1.015 
(2.236) (0.408) (1.923) (21.57) (15.60) (3.398) (0.030) 
0.068 3.916 4.633 -4.008 -1.967 -0.755 1.015 

(2.114) (0.448) (1.913) (21.53) (15.60) (3.401) (0.030) 
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Table 10. Concavity Tests From the Flexible Cost Functions a 

Experiment CES-translog Translog Generalized-Leontief 

1. p =-0.67 -9.2541 b -8.9012 -4.8521 
-7.2638 (42/50) c -7.8210(0/50) -3.0543 (0/50) 
-0.0200 +0.4210 +3.4243 

2. p =-0 .5  -5.9263 -6.2397 -3.9213 
-5.4921 (50/50) -5.4238 (0/50) -2.5027 (0/50) 
-0.0472 +0.1431 +1.8217 

3. p =-0.25 -3.2641 -3.2543 -3.2012 
-2.3591(48/50) -2.3412(50/50) -1.9201(30/50) 
-0.0212 -0.0021 -0.2082 

4. p = +0.1 -3.0321 -3.0271 -2.4176 
-2.2100(50/50) -2.5645 (50/50) -2.3579 (0/50) 
-0.0067 -0.0023 +0.2067 

5. p = +2.0 -1.5792 -1.5532 -3.2088 
-1.3232(50/50) -1.4721 (0/50) -2.7265 
-0.3211 +0.6212 -1.4991 

(50/50) 

6. P = -0.45 -2.2512 -2.0812 - 17.231 
Pl = -0.4 - 1.9920 (50/50) - 1.9632 (50/50) -2.1392 
P2 = -0.5 -0.0821 -0.0133 +0.1789 
P3 = -0.6 

(0/50) 

7. P =-0.85 -19.291 -20.124 -9.2344 
Pl = -0.7 -14.482 (0/50) - 14.234 (0/50) -2.1245 (0/50) 
P2 = -0.8 +0.1421 +0.1235 +2.562l 
P3 = -0.9 

aThe four estimators lead to similar very results. These are from the within estimator. 
bThe three entries are eigen values for the matrix of oij's. 
°The values in parentheses indicate the number of successes (of the concavity condition) 
among the 50 iterations. 

6. Conclusions 

We have  c o n s i d e r e d  the e s t i m a t i o n  of  f i rm-spec i f i c  t echn ica l  ine f f ic iency  u s i n g  
s tochast ic  f ront ie r  mode l s  with p a n e l  da ta  a n d  have  m e a s u r e d  charac ter is t ics  of  
the u n d e r l y i n g  technologies .  Several  f i nd ings  are wor th  m e n t i o n i n g .  W h e n  the u n -  
de r ly ing  t e c h n o l o g y  is very s imple  ( that  is, C o b b - D o u g l a s  or CES),  the ab i l i ty  of  
the s tochast ic  f ront ie r  mode l s  to es t imate  f i rm-specif ic  ine f f ic iency  is very good, 
regardless  of  the choice  of  f u n c t i o n a l  forms. As the complex i ty  of  the u n d e r l y i n g  
t e chno logy  ( tha t  is, C R E S H  p r o d u c t i o n  technology)  increases ,  however,  this  
ab i l i ty  m a r k e d l y  decreases.  T h e  p e r f o r m a n c e  of  es t imators  is s imi l a r  with respect  
to the e s t i m a t i o n  of  f i rm-level  ine f f ic iency  a n d  the u n d e r l y i n g  technology.  Because  
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o f  weak  a s s u m p t i o n s  a n d  c o m p u t a t i o n a l  ease, we prefer  the wi th in  es t imator  to 
mle  a n d  gls. T h u s  we amel io ra te  two c o m m o n  p r o b l e m s  o f  s tochas t ic  frontiers. We  
do  no t  have  to impose  a s t rong ( a n d  arb i t rary)  s t ructure  for  the d i s t r ibu t ion  o f  
t echnica l  inef f ic iency  in  o rde r  to separa te  noise  a n d  ineff iciency.  W e  a lso  do no t  
need  the i n d e p e n d e n c e  o f  t echn ica l  inef f ic iency a n d  inputs .  A m i n o r  f ind ing  is 
tha t  the C E S - T L  of ten  is be t ter  t h a n  the T L  in  mode l l i ng  the  u n d e r l y i n g  technol -  
ogy. Specifically,  for  an  ex t reme c a s e - - v e r y  easy o f  diff icult  s u b s t i t u t i o n - - t h e  
C E S - T L  is super io r  to the TL. I n  the  concav i ty  test o f  flexible func t iona l  forms,  the 
C E S - T L  d o m i n a t e s  the T L  a n d  the G L  over  a wide  range  o f  technologies .  

O n e  d i rec t ion  for  future research  is to c o m p a r e  the s tochas t ic  f ront ier  mode l s  
with D a t a  E n v e l o p m e n t  Ana lys i s  ( D E A )  in the e s t ima t ion  o f  f i rm-spec i f i c  t echni -  
cal  ineff iciency.  W i t h  the same  k n o w n  u n d e r l y i n g  t e c h n o l o g y  (the C R E S H  pro-  
duc t ion  funct ion) ,  we c a n  use D E A  [Charnes ,  C o o p e r  a n d  R h o d e s  1978] a n d  its 
mod i f i ca t ions  [Charnes ,  et al. 1985]. To  o u r  knowledge  this w o u l d  be the first s tudy  
to ana lyze  the relative meri ts  o f  these c o m p e t i n g  me thodo log ie s  in such  a genera l  
expe r imen ta l  se t t ing)  7 

N o t e s  

1. Farrell's idea is to construct a reference production set and measure productive efficiency relative 
to it. See Kopp [1981], Kopp and Diewert [1982] and Charnes and Cooper [1985]. 

2. For a treatment of the differences between an average production function from a frontier produc- 
tion function, see Forsund et al. [1977, 1980]. 

3. Traditional microeconomics gives little attention to the presence of productive inefficiency. See 
F~tre, Grosskopf and Lovell [1985] for an excellent exception. 

4. Another drawback is that stochastic frontier models have difficulty in modelling multi-output 
technologies. 

5. Farrell questioned whether allocative efficiency was of any intrinsic usefulness. Instead of aUoca- 
tive inefficiency, he argues that the measurement of technical efficiency was of primary concern. 

6. For the specification of alternative modeling scenarios for production processes see Judge et 
al. [19851. 

7. Reviews of panel data models can be found in Hsiao [1986], and Chamberlain [1983]. 
8. For a Fourier expansion as the approximating form, see Gallant [1981]. 

9. t~ij(X ) E x•fK F i j .  = - -  • , - -oo  < Oi j < + oo, 
xix j F 

where 

Fij is the co-factor of fii in F, F[jfl f l fl fll "" fin 

f2z. 
°° 

fnl.., fnn • 

10. This characteristic of finn-specific inefficiency was recently explored by Scale [1985]. 



258 GONG AND SICKLES 

11. Aigner, Lovell and Schmidt [1977] assumed that u has either a half-normal  density or an ex- 
ponential density. They implicitly assumed that the likelihood of inefficiency behavior monotonically 
decreases for increasing levels of inefficiency. But Stevenson [1981] suggested that the possibility of a 
non-zero  mode for the density function of u would seem a more tenable assumption (that is, a trun- 
cated normal distribution with a non-zero  mean). In the case of a hal f -normal  distribution, u is the ab- 
solute value of a variable distributed as N (0, a~). Its mean is ~ u )  and its variance is I(n - 2)/ 

2 
7]} • 0 u. 

12. For general discussions of duality theory, see Diewert [1971, 1973] and Blackorby et al. 
[1978]. 

13. Examples of mle in previous stochastic frontier studies include Afriat [1972], Aigner, Amemiya, 
Poirier [1976], Meeusen and van den Broeck [1977], Aigner, Lovell and Schmidt [1977] and Greene 
[1980a, b]. 

14. For more detailed explanations about the construction of the firm-specific technical inefficiency 
index, see Schmidt and Sickles [1984]. 2 

15. Instead of the magnitude of~u 2 and a~, their relative size is important: (1) L 2 2 = au/c~v = oo is the full 
frontier case for which there exists no statistical noise and (2) k = 0 in which case no technical inef- 
ficiency exists. 

16. The functional forms with a self-dual nature are limited (for example, the Cobb-Douglas and the 
CES production forms), and thus this approach cannot  be applied to complex production tech- 
nologies. 

17. For the comparison of stochastic frontier models and DEA, see Gong [1987]. 
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